Skip to main content

A faster, Non-recursive Algorithm to compute all Combinations of a String

Imagine you're me, and you studied Permutations and Combinations in your high school maths and after so many years, you happen to know that to solve a certain problem, you need to apply Combinations.

You do your revision and confidently open your favourite IDE to code; after typing some usual lines, you pause and think, then you do the next best thing - search on Internet. You find out a nice recursive solution, which does the job well. Like the following:

import java.util.ArrayList;
import java.util.Date;

public class Combination {
   public ArrayList<ArrayList<String>> compute (ArrayList<String> restOfVals) {
      if (restOfVals.size () < 2) {
         ArrayList<ArrayList<String>> c = new ArrayList<ArrayList<String>> ();
         c.add (restOfVals);
         return c;
      }
      else {
         ArrayList<ArrayList<String>> newList = new ArrayList<ArrayList<String>> ();
         for (String o : restOfVals) {
            ArrayList<String> rest = new ArrayList<String> (restOfVals);
            rest.remove (o);
            newList.addAll (prependToEach (o, compute (rest)));
         }
         return newList;
      }
   }

   private ArrayList<ArrayList<String>> prependToEach (String v, ArrayList<ArrayList<String>> vals) {
      for (ArrayList<String> o : vals)
         o.add (0, v);
      return vals;
   }

   public static void main (String args[]) {
      ArrayList<String> i = new ArrayList<String> ();
      i.add ("a");
      i.add ("b");
      i.add ("c");
      long start = new Date ().getTime ();
      Combination c = new Combination ();
      c.compute (i);
      System.out.println ("Elapsed Time: " + (new Date ().getTime () - start));
   }
}

So, if the above does what we need, what's the problem we are addressing? Well! Try passing "acknowledgement" to this function and enjoy your cup of coffee, cause there is no way your program will finish execution in realistic time; in fact, it may even crash due to low memory. The reason for that is the problem of computing all combinations is NP-Hard, so as the length of the string increases, the time hikes exponentially. The graph below illustrates this very well (input is on x-axis and time on y-axis).


Image Ref: http://www.regentsprep.org

What's wrong with the current approach is recursion. As your program starts branching, the tree becomes gigantic and your memory requirement grows exponentially too. While you cannot reduce the time it takes to compute all combinations, you can certainly do some tinkering to reduce the memory consumption, thus reducing the additional overhead.

In order to mitigate this issue, we look for a non-recursive solution. Now, in my case, I couldn't really find any (you might be luckier). So here is what I did:

Recall the table you once wrote in your College that maps all Hexa-decimal digits to respective 4-digit binary values?
0 = 0000
1 = 0001
2 = 0010
. . .
. . .
F = 1111

What's so interesting about these binary numbers? You choose the length 4, turn all to 0 and keep adding 1 and you'll get ALL combinations that can come out of a 4-digit string of binary digits. Now, think of a string stored in a character-array, if you print the characters on indices represented by a binary-digit array, you can get any combination from this string. This is exactly what we do here. We iterate a binary-digit array to the maximum number of combinations and bang! You get a non-recursive method to discover all possible combinations from a string. Here is the code in Java:

import java.util.Date;
import java.util.SortedSet;
import java.util.TreeSet;

public class Combinations {
   public static void main (String[] args) {
      long start = new Date ().getTime ();
      combination ("teststring");
   }

   public static String[] combination (String str) {
      SortedSet<String> list = new TreeSet<String> ();
      int length = str.length ();
      int total = ((Double) Math.pow (2, length)).intValue () - 1;
      for (int i = 0; i < total; i++) {
         String tmp = "";
         char[] charArray = new StringBuilder (Integer.toBinaryString (i)).reverse ().toString ().toCharArray ();
         for (int j = 0; j < charArray.length; j++)
            if (charArray[j] == '1')
               tmp += str.charAt (j);
         list.add (tmp);
      }
      list.add (str);
      return list.toArray (new String[] {});
   }
}

And here's the comparison of both the algorithms:

On x-axis, we have length of string ranging between 5 and 21 and time in milliseconds on y-axis. The recursive algorithm refused to proceed after length 10, throwing OutOfMemory Exception.

Note: due to fitting problem, I took Log of time by both Algorithms.

Another plus with this algorithm is that since recursive functions keep reducing the problem to a simpler solution and not start solving them unless it reaches the bottom, i.e. it cannot further reduce the input, you cannot interrupt them in the middle and ask for the values it has computed so far. Whereas here, you can stop the program at any stage and fetch the the program has already computed.

From pure algorithmic aspect, the complexity with former approach is Exponential, i.e. O(k^n). But our solution does the same in quadratic time, O(n^2). Please note that this does not mean that we have reduced an NP-Hard problem to a P-type problem. Because the number of times the loop executes itself grows exponentially, it is the execution time within the loop that we have reduced.

Realistically speaking, a common word in English will be under 20 characters. I mean, how often do you use Internationalization, really? But then this isn't only about English, right?!

Ending note: I'm new to theoretical computing, and might have mistaken here; please make correction if I have misinterpreted the results...

Comments

Popular posts from this blog

Playing in Amazon's Clouds - Introduction to Elastic Computing Cloud - Part 1

A really brief Intro.. Researcher, Trying to execute an extremely computationally resource hungry experiment? App developer, unsure of how much data you'll be collecting from the users? Student, tasked to build your FYP (final year project) on distributed computing environment? Just an ordinary techie trying to catch up with the world? If you're any of these, you cannot escape the fact that Cloud computing is storming in and you have to engage yourself actively in it. Adopt it, or perish. I'm a newbie (better say wannabe) in this massive web of computing, and here just to share some experiences I'm having - successes and failures. First of all, Cloud computing is nothing new, it has been there for over 3 decades and was referred with names like Grid computing  and Distributed computing . It was business people that came up with a catchy name to attract business. The idea behind distributed computing is simple. We create a network of computers t...

How to detach from Facebook... properly

Yesterday, I deactivated my Facebook account after using it for 10 years. Of course there had to be a very solid reason; there was, indeed... their privacy policy . If you go through this page, you might consider pulling off as well. Anyways, that's not what this blog post is about. What I learned from yesterday is that the so-called "deactivate" option on Facebook is nothing more than logging out. You can log in again without any additional step and resume from where you last left. Since I really wanted to remove myself from Facebook as much as I can, I investigated ways to actually delete a Facebook account. There's a plethora of blogs on the internet, which will tell you how you can simply remove Facebook account. But almost all of them will either tell you to use "deactivate" and "request delete" options. The problem with that is that Facebook still has a last reusable copy of your data. If you really want to be as safe from its s...

Yet another Blog on Query Optimization for MySQL Server

If you have been into MIS development for some time, then you may have realized that buying latest, multi-thousand-dollar Machine, stuffed with a top notch processor and an army of memory chips is not sufficient to your needs when it comes to processing large data, especially when your DBMS is MySQL Server. In this article, I have tried to input  the tips and techniques to-be-followed - some in general and some specific to MySQL Server; but I would, as every blogger, repeat the same common phrase that " in the end   it all depends on your scenario ". The results you are going to see will mostly be in milliseconds so before thinking "is it worth the effort if the result is in a few milliseconds?", do know that these results are derived using a very very simple database with not more than 100000 records in a table.  With complex databases and records in millions, the effort will pay you back. Coming straight to topic, here are some points you should not ign...